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Abstract. The steady-state propagation of a semi-infinite, anti-plane

shear crack is reconsidered for a general, infinite, homogeneous and

isotropic linearly viscoelastic body. As with an earlier study, the

inertial term in the equation of motion is retained and the shear modulus

is only assumed to be positive, continuous, decreasing and convex. A

Barenblatt type failure zone is introduced in order to cancel the singular

stress, and a numerically convenient expansion for the dynamic Energy

Release Rate (ERR) is derived for a rather general class of crack face

loadings. The ERR is shown to have a complicated dependence on crack

speed and material properties with significant qualitative differences

between viscoelastic and elastic material. The results are illustrated

with numerical calculations for both power-law material and a standard

linear solid.
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§1 Introduction

A central issue in fracture mechanics is the development of fracture

criteria. A great many experimental and analytical studies have addressed

this topic in the nearly sixty years since Griffith's pioneering work.

One fact that has emerged from this effort is that the choice of a

fracture criterion is very much dependent upon the particular scenario

considered. For example, the notion of a critical Stress Intensity Factor

(SIF) has provided a highly successful criterion for quasi-static crack

propagation in linearly elastic material. Important factors for the

success of the SIF in this setting are that it is often easily computed

4and that the Energy Release Rate (ERR) can be determined in a simple

manner from it. However, such is not the case for dynamically propagating

cracks in viscoelastic material for which the entire deformation

history during crack advance, not just the SIF, is required in order to

calculate the ERR.

The notion of ERR employed here provides a phenomenologically

meaningful and mathematicaly convenient fracture criterion for dynamic

viscoelastic crack propagation. For dynamic fracture in linearly elastic

material, the ERR, G, is usually defined as the difference between the

total power input to the body by external forces, P, and the rate of

change of the total internal strain energy, t, and kinetic energy, K. It

is then easily shown (see [1] for example) that G can be calculated from a

knowledge of the instantaneous, singular asymptotic stress field at each

crack tip.

For viscoelastic material the situation is more complicated. In this

case the difference P-- contains two terms: a history dependent body

fo.
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term, W, representing the energy dissipated through viscous effects and

the quantity G which now depends upon the entire history of the singular

asymptotic stress and strain fields at each crack tip during the time the

tip is advancing. Physically it is reasonable to assume that a fracture

criterion should depend only upon these near tip fields. However, the

quantity G, which can be interpreted as the power input to the crack tip,

is extremely cumberson to calculate from the singular fields. Instead, in

this paper a Barenblatt type failure or process zone is introduced behind

the crack tip in order to cancel the singular asymptotic fields in front

of the crack. What results is that G is given by the formula (3) below

and hence that the power input to the crack tip is given by the rate of

work done by the tractions in the failure zone.

The purpose of this paper is to demonstrate that for dynamic crack

propagation in linear viscoelastic material, the ERR can be conveniently

calculated even though it is not just a simple function of the SIF.

Moreover, while the SIF is a monotomically decreasing function of crack

40speed, the ERR can exhibit much more complicated behavior depending upon

combined viscoelastic and dynamic effects. In particular, the numerical

calculations presented here suggest that for some ranges of crack speed,

stable crack growth occurs while for other values, unstable propagation

can be expected. This point is considered further when the numerical

examples are discussed.
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The specific boundary value problem considered here is that

corresponding to the steady propagation (to the right) with speed V of a

semi-infinite, anti-plane shear crack in a general, homogeneous and

isotropic, linearly viscoelatic body. The shear modulus, p(t), is assumed

only to be a positive, non-increasing and convex function of time, t. The

governing equation of motion for the out of plane displacement, u3, is

V*dAu 3 = p u3,tt

where A is the two-dimensional Laplacian, A = (a21/Xx) 2 + (82/aX2),a

u* de denotes the Riemann-Stieltjes convolution

u* de =f u(t-r) de(T)

Upon adoption of the Galilean variables x =x - Vt, y = x2 , the boundary

conditions may be written

a 2 = (v* du3 ) =f(x), x < 0

u 3 (x,0) = 0 , x > 0

a ij(x,y) + 0, x2 + y 2 + W

where aij are the stress components and f(x) is a system of tractions

moving with the crack.

The starting point of the present investigation is the solution

derived in [3] for the above boundary value problem. It was shown in [3]

-' that two cases arise naturally in constructing the solution: 0 < V < C

* * /2 1/2
and C < V < C where C = (v(-)/p) and C = (u(0)/p) are the elastic

shear wave speeds corresponding to the equilibrium and glassy values of

. 6.,...,-- ,.
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the shear modules P(t). For 0 < V < C , the stress field is that for

static elastic fracture and is therefore independent of crack speed and

material properties. Whereas, for C < V < C, the stress field is both

speed and material dependent. Specifically, the SIF, K, is given by

-1 -1

i (xO) lxI 2 dx , 0 < V < C (1)

K= (x,0 ixi-1

1! f 323 MToe x dx C < V < C

where g-(x) (g +(x)) denotes the restriction of g(x) to x < 0 (x < 0) and

q is the unique positive constant such that

0q -Vt 2
Vqo f *(t)e v  dt = (V/C) . (2)

In (2), P(t) denotes the nondimensional modulus given by

, (t)W - PMt/P(O).

In order to calculate the ERR, the object of principal interest in

the present study, it is necessary, as discussed earlier, to modify the

above boundary value problem by the introduction of a Barenblatt type

failure zone. Specifically, it is now assumed that two loads are acting

on the crack faces: the applied (external) tractions a23(x,0) discussed

above, but now denoted ae(x), and cohesive (failure) stresses
e

of(x) acting in a failure zone of length af immediately behind the crack

tip. The only assumptions about af(x) are that a is small relative

relative to some length scale a associated with oe(x) and that
e e

J*Z.



Ke + Kf= 0 where Ke and Kf are the SIF's corresponding to

a- and of, respectively. Hence the effect of the failure zone is to

cancel the singular stresses ahead of the crack tip and thereby produce

a cusp shaped crack profile behind the tip.

The ERR, G, for steady-state crack propagation is now defined by

0
G = a f (x) u3, 1 (x,O)dx (3)

-af

where u3 (x,O) is the crack face displacement corresponding to the combined

loading ae + af . Thus G has the interpretation of power input to the

crack tip from the total load, i.e. the power available to the crack

tip for propagating the crack. Unlike for elastic material, G for

viscoelastic material is not merely a simple function of K. Rather, as is

evident from [3], u3 1 (x,O) has a complicated dependence upon the loading

ae(x,O), making impracticable the direct numerical evaluation of (3). In
e

the next section, a computationally convenient expression for (3) is

derived for a special, but still fairly general, class of loadings

a e and af *

§2. The Calculation of G

For simplicity of argument and clarity of result, the ERR, G, given

- in (3) will be calculated first for a simple special case. Specifically,

the external load, oe(x) and failure zone stresses, af (x) will be assumed

to have the forms

pa

.' 4 " .. '.t . , " ' . ". ' . ,. .- - . ' .. .. . -- -,- -. ." -. . , *. -* .. '* - '., '



x/ae

Oe(x) = L e

- C= <x < 0 (4)
e e x/af

f faf(x) = - Lf e

where af/ae << 1. (c.f. [2]) For af/ae small enough, the fact that a; (x)

does not have support in some small, compact interval behind the crack tip

will have a negligible effect on the results. The assumptions (4) then

clearly incorporate the salient features of the Barenblatt model, namely,

a set of cohesive stresses and associated length scale af and a length

scale a associated with the applied load a- such that a- cancels the
eef

singular stresses produced by ae and af/ae << 1. If should be noted that

in this case, (3) is replaced by

0
G f af(x) u31 (x,o )dx. (5)

In order to present the results in a suitable nondimensional form, it

is useful to introduce certain parameters. First a characteristic time

scale, T, is defined and the shear modulus given the form

u(t) = u m(t/)

where m(s) is a nondimensional function of s with lim m(s) = 1 and

u nlim (t). Also useful are the nondimensional parameters a, 0, Y, C
t -C0

* and A defined by

a -CT/ae a -8 qoae y 5 V/C e =- af/ae X Lf/L e. (6)

It should be nnted that a and 8 assume any positive value while y must be

such that 0 < y< C/C . Also, 8 = 0 whenever 0 < V < C*.

.... .-... .. ..... ....- .-.......... ".-.. .................................................'...'.,.......'-'..."....-.-'-,..-.-.-.-........'..
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The desired expression for G is most easily expressed in terms of the

Carson transform, m(s), of m(t) defined by

-tsM(s) = m(O) + f e t  dm(t).
0

It is useful to record for future reference the easily derived formula

p(r) = ucii(r).

It will now be shown that for loads of the form (4), G is given by

G- K 2 ( - 1 [1-00e 2 2 (7), " G (T+-i-- F(ay/c) 1-y 2 /m(ay/c)(7

where K K e -Kf is the dynamic SIF. From (1) and (4) it follows easily

that

K. Lfvaf Le'aeK = - (8)

/1+ 0 /1+6

The derivation of (7) from (5) utilizes the Fourier transform f

of a function f. Specifically,

f(p) = f f(x) eixPdx
-00

with inverse, f(x), given by

f(x) =1 f ( p ) e-iXPdp"

Applying the Parseval formula for the Fourier transform, it follows from

(5) that

G = a f (p)u 3 ,1 (p)dp. (9)

.......................................
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In consideration of (4), a straight forward calculation shows that

S(p) afLf

(1+iafp)

(10)
-a fLfof(p) = 21'(l-iafp)

The integral in (9) may be readily evaluated using residues since, from

(10), it is clear that a4(p) has a meromorphic extension to the lower
f

complex half-plane with a simple pole at -i/af. Moreover, u3, 1(x,0)

vanishes for x > 0 from which it follows that u3,1(p) = u3, 1 (p) has an

analytic extension, F-(z), to the lower half-plane with

lim F-(p-iq) = 0.
q+-

Consequently, for G one has

G = L f F(-i/af). (11)

It remains to evaluate F(-i/af). To this end use will be made of

the following formulas derived in [3]:

u3 ,1(p) =a(p)/G(p), (12)

G(p) = - i sgn(p) j(iVp)y 1(iVp), (13)

and

2
Y1(ipV) = (1-y 1/(iVp)) 1 /2  (14)

Here one has

a (p) -(p) + (p)

0-(x) a e(x) + o (x)

- - - . . . . .. . .. - .,. , - ..-. .-,.. . ... .. ...... - ....* * - . -.-,,-. -.-,,.



9

where a+ (x) (a-(x)) denotes the restriction of o(x) to the half-line

x > 0 (x < 0). It should be noted that a + (x) is the nonsingular stress

field ahead of the crack that results from superposing ae and of,

Moreover, it is shown in [3] that

a +(p) = lim F+(z)
I m(z)+O+

where
-. ~ ~ 1/ 1_)12d

F (z) (q -iz)f2  1 -(.t)(qoi- --1/2 , (15)
20 -" (r -z)

with qo given in (2). To evaluate (15), consider first

0+

a (p) = lim F (z)
e Im(z)+O+ e

in which

F+(z)=-(qoiz)i 2  f a - (t)(qo-ir)1 / 2 d • (16)
e 0 2i 0 (T-z)

From the analog of (10) for a-(p), one sees that ao(p) has a simple pole
e e

at i/ae. Since the branch of (q-i 1 must be chosen to be analytic in

the upper half-plane (see [3]), the integral in (16) can be calculated

using residues. Thus for I m(z) > 0,

F (z) = -(q -iz) 1/2 [-iL(q+1/a)/2/(i/a-z) +;1(z)(qoiZ)-1/2

Now letting Im (z) + 0 and adding a(p) toa (p) there results

So(p) = F (p) +a(p)

"iD) - i Le (q o-ip) 1/2 (q +1/ae)-i/2/(i/a e-P)

aeLe(0/(l+0)) 1/2(-ip/q 0 ) /2/(1+ipa e). (17)
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Similarly, for of(p) one can show that

= 1/2 pq 1/2Of~p) -afLf(Oc/(1+0c)) (1-i p/ ) /(1+ipaf). (18)

Combining (4), (8), (17) and (18) one concludes that

1/ (1-e)(1-ip/q0 ) )1/2

a~)= -ae Le(O/(1+0))11  (1+ia ep) (1+iafp) *(19)

Substitution of (19) into (12) gives

Fp 31(p) a eL e(O/(1+0)) (1-e)o 1(P)02(P)

with

0() (l+la eP)_ (1+iafp)-

and

? 2(P) (1 -ip/q 0 )1/
2 /G(p).

1 (p) is obviously an analytic function in the lower half-plane and in [3]

it was shown that the branches of (1i/ )12and yl(iVp) must be chosen

so that 0 2(P) is also analytic there. Thus one may substitute (20) into

(11) making use of (13) and (14) to conclude that

0/0+0____112_____0 1-1/(qoaf) 1/
G = aeL Lf8(+)1/(ie v2i(/a]

2(1+a e/af)ip(V/af) 1L -(/

Combining (6), (8), and (21), there finally results the desired formula

(7).

The derivation given above is easily modified to produce an analog to

formula (7) for more general loads of the form



~11

Stx/a
-o(x) = Lfe e dh(t)

tx/af (22)e -Lf e d hf(t)
0

wh r h (t) andc et / f d h ( )( 2

where he M and hf(t) are arbitrary signed (not necessarily positive)

measures restricted only to the extent that the required integrals

converge. For example, the special cases (4) correspond to d he(t) =

d hf(t) = 6(t-1), the Dirac measure concentrated at t = 1. As further

examples, d he(t) = sin(t)dt and d he(t) = cos(t)dt produce

1 (x/ae),c, a(X) _ an e(X)= e
ye 2 ean 2l+(x/a e) 1+(x/ae)

respectively.

Substitution of (22) into (1) followed by an interchange of order of

integration results in

Ke = L -a- f (t+$)" 1/2 d h (t)e e e 0 e

" = f aV f I ( t + ) " 1 / 2
(t+) d hf(t)") 0

d - Kf

where, as before, 8 - aeq o . Corresponding to (10) there is

;e(p) = a L (t+ipa d h(t)e e eJf epe0
(23)_() aeLe d h -

a(p) - i- - (t-iaep d he(t)
e 0e

w2
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Lines (15) and (16) are still valid but with a- given now by (23). In
e

particular, one has for I m(z) > 0 and after an interchange of integration

that

1 )1/2 1 1/2 dt

e(z) = -(qo-iZ) 2 aeLe J dhe(r) j (qoit)- (T+itae t-z) (24)

The integrand in the inner integral in (24) is analytic for I m(t) > 0

except for simple poles at t = i -r/ae and t = z. Calculating the inner

integral by residues, there then results

1 f0(q -it)-1/2(T +i tae)- 1 -dt = [(q iZ)-1/2_ (q+-r/a -1/2]/(T+iza
2NT' o. 0 ~ ~e (t-zj X 0(q 0  e e/r~z

If one now lets Im (z) + 0 in this last result and makes use of (23a) and

(24) it follows that

1+= lpo/2 OD + 1I2 dhe (T)

0e~~~~ 'e+0e=aL(1-ip/q 0) 1  f (0/(T+8))110e
(p)  e e ae e(0 0 (T+ipae) (25)

For ;f(p) one has

1/2 OD1/2 ____T

Of(P) = -afLf(l-ip/q) (O/(T+OC)) Tf
(0 r+Ipaf)

the analog of (18), which when combined with (25), gives

£(p) = a e(p) + 'f(p)

= (1-I p/qo) 1/2H(p) (26)

Sa eLe($/(t+O)) 1 / 2  ,- afLf(CO/(T+CO))1 /2

0 (T+iaeP) e 0 (T+iafp) dhf(r).(27)

~KC~:A..~ ~ ~ 1
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It is easily seen that H(p) is analytic for I m(P) < 0 and H(p) + 0 as

Im(p) + - -. After substitution of (11), (12), (23b), (26), and (27) into

(9) and an interchange of integration one obtains

af Lf f dhf(t) - f- '(t,p)dp (28)

where

1/2

T(tp) - H(p)(1-ip/q0 )

As before, the branches of yl(ipV) and VI-i- o can be chosen so that

i sgn(p) 1-i p/qo/Yl(ipV) is analytic for Im(p) < 0. Thus, '(t,p) is

analytic for Im(p) < 0, except for a simple pole at p = - it/af.

Evaluting the inner integral in (28) by residues, yields finally

Lf c H(-it/a rf . 't/(Oc)
G - dhf(t) (29)

POO 0 M~ay--t L -Y 2/m-(yt/c )]/

with H(-it/af) defined in (27).

The two integrations required to evaluate (29) make it much more

cumbersome to calculate numerically than (7), though still much easier

than calculating G directly from either (3) or (5). However, since

S<< 1, it is not unreasonable to take dhf(t) = 6(t-1), i.e. to take the

simple form (4b) for af(x), since the details of the failure zone stress

are not significant. Formula (29) then simplifies greatly to

~A 1C
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G Lf H(-i/af) 
[ 1-1 ( 8) ] 1/2

IiiO (QY/C) [ 2-

afLf I / 112 f dh e(T)
H(-i/af) = 2 (c13/(1+-1)) 1  + a Le 1 1 e 1/22e0 (T +I)( 1

subject to the auxiliary constraint

L f( f )1/2 = L (a )1/2 f dhe(t)

0e0 (t+1

In the next section, the qualitative behavior of G is investigated by

considering the special cases of a power-law material and a standard

linear solid.

§3. Numerical Examples

The formula (7) will now be applied to the special cases of a

standard linear solid and power-law material. First considered is the

standard linear solid, which is modelled by a constant Poisson's ratio and

a shear modulus, p(t), of the form

u(t) = p.(14ne
t / T

= 1,,,n( t/T )

It follows that 1 + n = (C/C*)2 and m(s) is given by

M'(s) = 1+s (30)

From (2) and (30) one easily shows that

q = (y--1) (31)
TV((14n )-y)

It should be noted that the restriction 0 < V < C corresponds to

0 < y2 < 1 + n, and moreover, that qo = 0 for 0< y < 1. From (7), (8),
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* (13), (30), and (31), one readily obtains the formula

G e e.~ g(c',y'n ,c)

where

g~a~,~,~ = 1-1c (1+ay(1+ri))112  2Y+,aY(14n__Y2))1/2 0 _1

and (32)

g(a,y~ri~c) =(1-c) (E+aXy)(0+00) 1/2 < 1n1/2
+c(1+0)(ciy(r+1-Y 2)11 (C+aMY(14n ))"~ 11n

Figure 1 displays a normalized SIF, k =-K/(Leae), which from (8) is

e1e

seen to be just k = (1+0) . From (31), 0 is seen to be given by

B ( 2_ ( 1)2

In Figure 1, k is plotted atainst y' Sy//i for a = .1, l and 10.

Clearly, k must vanish as y approaches 1.

In Figure 2, g(a,yn,e) is plotted against log(y) for 0 < y 1 and

against log((A4FiT-1)/(v$ iT-1y)) for I < Y < v/n+1 , for n = 10, £=.01 and

a = .1, 1, 10,100. Thus the failure zone length is assumed to be

constant. For many materials (such as rubber) a more realistic

approximation is furnished by assuming a constant failure zone stress

level, L. This is tantamount to holding A~ constant and allowing c to
*1f*

% vary. From (8) one easily calculates c as a function of X to be

C = [X2 (0+1)-$]-
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Consequently, one may regard g as a function of a, y, n and X.

Figure 3 is the analog of Figure 2 for A=1O, n=10 and a=.1, 1, 10.

It should be noted that g vanishes as y approaches 0tr+1 when A is held

constant. However, with e constant, g tends to a non-zero finite limit as

y tends to vi-+1, i.e. as V approaches the glassy shear wave speed.

Indeed, from (32b) it is easily seen that

~~lim g(a,y,n,€) = ( j(ff+ ic1+T(/n)I/
yim gna+yVn -) = (+ (e+a(n +1) 3/2) 1/2

The second example considered is a power-law material for which the

shear modulus is assumed to have the form

P(t) = u= (l+(t/ ) -n) , 0 < n < 1

= u0 m(t/r ).

For such material, the glassy wave speed, C, is infinite and W(s) is given

by

i(s) = 1 + r(1-n)s n  (33)

From (2) and (33) one sees that

qo = 1() 21 ] 1/n
and hence that 8 = (y2-1) 1/n/(LY) (34)

where, for convenience, a has been redefined by

= r(1-n)1 /n C*T /ae

Combining (7), (8), (13), (33), and (34), it may be shown that

a 2.

G = L,,, g(a,y,n,c)
T9.
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where { (+-E,)E -y2 +(ay)n' 1/2[ +( y)n]-1/2 0 < y <

g(c,y,n,e) =

(1-C Mf1/2((ay) 2n+(y)n)'1/2/(1+O) 1 < y
1-C (,,)n

Figure 4 is a plot of the non-dimensional SIF k = (1+8)"1 against y for

a=.1, 1, 10 and n=.3. Figure 5 shows g plotted against log(y) for

a=.1, 1, 10, 100, n=.3, e=.01. Figure 6 has a=1, c=.01, n=.1, .3, .5,

.7. The case X constant is not exhibited here since it results in little

change from the constant c calculations.

Several comments on the numerical results should be made. It can be

observed for a standard linear solid in Figures 2 and 3 and may be shown

analytically for general material that the slope of the curve g versus y

is discontinuous for y = 1, i.e. as V passes through C*. A more striking

observation is the loss of monotonicity of g as a function of y for

certain ranges of the parameters. For example, in Figures 2 and 3, it is

seen that for a = .1, g is monotone decreasing in y, whereas for a = 1, 10

g has a relative maximum on 1 < y < /-7. As seen from Figure 6, for

power-law material, varying the exponent n also causes a transition from

monotonicity to having a single relative maximum. The lack of

*monotonicity suggests that certain crack speeds are unstable. In

particular, since G has the interpretation of power input to the crack

tip, the y-intervals on which g is increasing are those on which an

increase in crack speed produces an increase in the power available to

propagate the crack. Evidently this lack of monotonicity is due to the

combined inertial and dynamics effects considered here. It is also worth

noting that these results illustrate that in contrast to elastic material,



18

for viscoelastic material, there is no simple relationship between G and

K. Indeed, though K is always a monotone decreasing function of V which

vanishes at the glassy shear wave speed, G need not be monotone and need

not vanish at V = c.
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Figure 6. g versus log(y) for a power-law material with c=.01,
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